情感说说 > 心情说说 > 生命是什么89句精选

生命是什么89句精选

admin 2023-04-09 11:19 心情说说

生命是什么

1、我的第三个原则是,生命体是化学、物理和信息机器。它们构建自身的新陈代谢,并以此维持自身的存续、成长和繁殖。这些生命体通过管理信息来自我协调和调控,以让生命体作为有目的性的整体来运作。

2、为了更好地理解为什么定义生命如此之难,让我们了解一下几个工作在区分生命与非生命前沿的领域——

3、⊙译言·东西文库东西文库是译言旗下的科技文化品牌,致力于“第三种文化”的思考、传播与交流。注重在互联网、科技、商业、媒体、电子阅读等领域的互动,包括但不限于:纸质、电子出版,版权引进、策划,文化论坛。 已出版《失控》、《技术元素》、《颠覆医疗》、《智能时代》、《字体故事》、《数字乌托邦》等图书。 

4、►1665年,罗伯特·胡克发表了巨著《显微术》。在书中,他展示了在显微镜下观察到的软木标本图片。胡克把图片中蜂巢状的结构命名为“细胞”。我们现在知道,胡克图片中的蜂巢结构其实是植物的细胞壁,这是一种由多糖类物质形成的结构。细胞壁内部才是细胞膜。动物细胞没有细胞壁。

5、生命是一种能够生长和自我复制的系统。那么火也可以被视为一种生命,毕竟它也能够生长并自我复制。

6、有关生命的主题总是充满神秘难解的特性。爱因斯坦说,“我们所能感受到的美是神秘的,神秘性是一切真正的艺术与科学的来源”。所以,只要对这个世界、对我们自己还抱有好奇和兴趣,都可以试着去拨开生命迷雾,一窥究竟。

7、病毒几乎缺乏所有我们认为是生命的条件,除了它们能通过编码DNA或RNA来传递遗传信息。DNA或RNA是生命构造的蓝图,被这个星球上所有的生命所共用,这便意味着病毒可以演化与复制,即便它们只能通过“劫持”其他活着的细胞来完成这些活动。

8、曾经人工生命只存在于科幻小说中,但是现在却已经成为一个成熟的科学分支。

9、“生命的外壳:细胞膜”一文以及插图,节选自王立铭新作《生命是什么》。《知识分子》获授权发表。

10、薛定谔承认,这些设想都无法回答“遗传物质是如何运作的”这个更深层次的问题,即遗传是如何在发育和代谢中发挥作用,好让有机体以薛定谔称之为“四维样式”的形态在时空中不断实现自我构建和维系。无论如何,薛定谔借用热力学语言提出的问题,无疑为这方面的探索打开了大门。

11、HaroldUrey研究生命的起源。图片来源:USDepartmentofEnergy/SciencePhotoLibrary

12、会有硅基生命演化出来吗?图片来源:JeffJ.Daly/Alamy

13、很有意思的是,这种对环境和偶然性的思考如今也成了量子力学的核心内容,比如纠缠、退相干、互文性。这究竟是否纯属巧合,现在恐怕还言之过早。ⓝ

14、►电子显微镜下的细胞膜。图中显示的是两个细胞的边界,两个箭头分别指向两个细胞各自的细胞膜。(生命是什么)。

15、既然寻找和制造新的生命并不需要一个通用的定义,那这是不是意味着科学家可以停止思考生命的定义了?科罗拉多大学的哲学家CarolCleland认为答案是肯定的,至少暂时是这样的。

16、生命是什么?作者在开篇并没有尝试直接回答这个问题,而是把我们的视角转离地球,瞄向太空。他首先提出了一个全体人类都感到好奇的问题:外星生命是否存在?接连几个精彩的科学故事,从非常有说服力的“费米悖论”,令人遐想的“戴森球”,以及可以推算外星生命机率的“德雷克公式”,展示人类一直尝试用理性去想象外星生命的存在的模式。寻找外星生命,一个前提是我们要有能力分辨什么是生命?这也是困扰美国航天局负责寻找外星生命的科学家的主要问题之一。这个问题自然而然引出了作者的创作主旨——生命是什么?

17、诺贝尔奖得主、奥地利物理学家薛定谔在其1944年的著作《生命是什么?》(WhatIsLife?)中,提出了一个更加具体但同书名一样发人深省的问题:“是什么让生命系统似乎与已知的物理学定律相悖?”薛定谔当时给出的答案现在看来颇具预见性。他指出,生命的特征在于“密码本”,这个密码本不但可以指导细胞组织和遗传,还能让有机体摆脱热力学第二定律。

18、人类用自己的力量和智慧,创建了无数辉煌的业绩,运动场上一个又一个世界纪录的刷新、科技领域一项又一项发明创造的诞生,展现了人类生命力与美的无穷魅力。飞出地球的壮举和探索外星生命的尝试,表明人类具有藐视一切极限的气魄,生命力量和智慧的扩展是无限的。

19、迷信认为生来就注定的贫富、寿数等:天命。命相(xiàng )。命运(迷信指生死、贫富和一切遭遇;喻发展变化的趋向,如“人民一定能掌握自己的命命”)。

20、从这种更广泛的生命观出发,我们看待生命世界的眼光也会变得更丰富。地球上的生命都从属于一个单一的、巨大的、相互关联的生态系统,其中包含了所有生物。这种基本的关联不仅来自生命体之间相互依存的深刻关系,还源于一个事实:追根溯源,所有生命体都有一些共同的进化根源,因而在基因层面相互关联。

21、再现复杂性同时也解决了像骡子(一种由公驴和母马交配诞下的无生育能力的后代)这类生物所面对的尴尬:它们显然是生命,但由于无法生育因此欠缺了一条关键的生命特征:自我复制。

22、►高特和格兰戴尔提出的磷脂双分子层模型。简单来说,细胞膜是由两层紧密排列的磷脂分子构成的,磷脂分子的极性“头”朝外,和水分子亲密结合,非极性“尾”则隐藏在分子内部。可以看出,这样的结构最大程度地避免了电中性的尾巴和水分子的接触,在物理性质上很稳定。事实上,细胞膜的基本模型在1925年之后并没有巨大的改动。

23、薛定谔进而又提出,这种基因编码分子(薛定谔等人对基因编码分子是较大的蛋白质的观点持怀疑态度)的构型存在多种可能的形式,能够编码大量信息,这种形式的多样性可以提供细胞的“密码本”。虽然每个原子的位置都很重要,但模式却不会重复——薛定谔因此将分子形容为一种非周期性(不规则)固体。

24、拥有通过自然选择进化的能力,这是我用来定义生命的第一个原则。正如我在自然选择那一章中所说的,它取决于三个基本特征。为了进化,生物体必须能够繁殖,必须有一套遗传系统,并且,遗传系统必须表现出变异性。任何具有这些特征的实体都可以且必将进化。

25、薛定谔涉足交叉学科的步子迈得小心翼翼。他称自己是“天真的物理学家”,单纯思索着生命是如何自我维系并把基因突变稳定地传递给下一代。

26、生命体能将复杂的高分子化学与线性信息存储结合在一起|Pixabay

27、朊病毒几乎被认为是“生命”。图片来源:AlfredPasieka/SciencePhotoLibrary

28、“在这个过程中,不要在意吸收了多少知识,重要的是,读者能够了解生物学家是沿着什么样的路线来理解这个世界上的生命现象的,生命现象反过来又可以被拆解成哪些底层和通用的概念和思想。”王立铭希望,不论你从事何种职业,在何种年龄,都能因此感受到生命之美、科学之美、科学探索之美。

29、生命形态是有边界的有形实体|Pixabay

30、源自:网络  | 主播:孟飞Phoenix

31、科学研究从来就不是一蹴而就的坦途,曲折反复、浴火重生是常态。但是无论如何,从知道有一层逻辑上必须存在的膜,到搞清楚这层膜到底是什么,三百年还是太长太长了,长到在对科学史盖棺定论的时候,我们必须为此给出一个合理的解释。

32、作者又从普遍的能量使用方法中,推出了两个非常重要的基本概念——ATP及其合成酶。在王立铭的叙述中,关于它们的科学研究留下了不少科学家悲伤和无奈的故事,但到了结尾也有反转的惊喜。

33、从行文风格也可以看出立铭是有人文情怀的作家,他的作品充满了积极对待未知世界的态度和一个更好未来的信念。这部作品的风格让我想起我最喜欢的法国科学大师、优秀的科普作家弗朗西瓦.雅克布(FrancoisJacob,1920-201965年因操纵子模型获诺贝尔奖)。他在1973年出版的科普著作《生命的逻辑》探讨的角度和思路与立铭本书有交相辉映之处。

34、对于地球生命来说,在生命体和周围环境之间存在着不言而喻的清晰界限。皮肤毛发包裹着人类的躯体,水里的鱼虾顶着闪闪发光的鳞片或者厚厚的硬壳,树木的躯干上也裹着斑驳嶙峋的树皮。很难想象会存在一种生命,和环境之间有着缓慢过渡的边界。就像我们看不到人体的内脏飞得满房间都是,也不会看到树木若有如无的魅影笼罩成了一片树林。

35、“信息分子的错误复制可能是生命发生和演化的起源,这也因此造成了非生物化学向生物化学的转变,”Bada说。复制,特别是错误复制导致了具有不同能力的“后代”的产生,这些分子后代开始为了生存而互相竞争。

36、有些英文教材会用“MRSGREN”作为便于记忆的口诀,帮助孩子记住定义生命的7个元素:运动(movement)、呼吸(respiration)、感知(sensitivity)、生长(growth)、繁殖(reproduction)、排泄(excretion)和营养(nutrition)。但是这仅仅是定义生命的开始,绝不是终点。有很多用传统的定义难以划归到生命的类别都拥有这7种特征,比如一些晶体,以及具有传染性的蛋白质——朊病毒;甚至一些计算机程序按照MRSGREN的归类方法都可以被称为生命。

37、当然了,欧福顿的理论听起来头头是道,但是有一个相当致命的技术问题没有顾及到。脂类分子构成的膜为什么不会动不动就突然崩塌,进一步收缩成更小更致密、表面积更小的球?要知道,既然脂类分子在水中的天然倾向是减小表面积,那自身聚集成一个实心球,把大多数脂肪都包裹起来岂不是最好的解决方案?

38、甚至不需要做任何观察和实验,我们也能轻而易举地推导出这层分离之墙的许多有趣性质。

39、“如果你试图用斑马来概括哺乳动物的特征,你会选择哪种特征?”她问道。“你可能不会选乳腺,因为一半的个体都没有乳腺——只有雌性斑马有。条纹可能是一个显而易见的选择,所有斑马都有条纹,但是这仅仅是个巧合,有条纹这个特点并不是让斑马成为哺乳动物的理由。”

40、今日倾力奉献北京大学定量生物学中心主任汤超教授在财新智库举办的第二期“金融圈读书会”上对薛定谔《生命是什么》一书的精彩解读,让我们一同走进薛定谔的科学王国,从生物学和物理学结合的视角探索人类生命的奥秘。

41、人类的整体智慧对真实世界的认知尚且充满局限,更何况每个普通的个体,不必因为我们暂时的“浅薄”而胆怯。

42、但是这些化学物质是没有生命的。只有它们开始进行一些特别的活动,例如排泄,或者自相残杀时,我们才会认为它们是生命。那这些化学物质需要什么条件才能一跃成为生命呢?Bada的答案出人意料。

43、进化论是人们思考生命本质的关键|Pixabay

44、特别是到了19世纪末,在检测了市面上能找到的数百种化学物质之后,英国科学家内斯特·欧福顿(ErnestOverton)发现,并不是把细胞丢在什么溶液里它都会像变戏法一样长大缩小的。各种各样的盐溶液都没有问题,但是如果换成脂类分子溶液(比如大家耳熟能详的胆固醇),这种戏法就不灵了。那么根据上面的逻辑继续推论,我们还可以进一步猜测脂类分子也能自由通过细胞膜。这样在脂肪和水的环境里,细胞膜就像筛子一样,完全起不到“分离之墙”的作用,当然也就谈不上能控制细胞的大小了。在此观察的基础上,欧福顿天才地设想,这层薄薄的细胞膜可能是脂类分子构成的,特别是胆固醇和磷脂这两种脂类分子。

45、生命是从一种多聚体类型向另一种多聚体类型翻译的产物(例如从RNA到蛋白质,或从电脑中的比特到DNA)。我们该如何来确定这种翻译的重要性呢?各种精确的翻译关系都比再现复杂性更令人惊叹。我们能够检测两种多聚体在结构特征上的相似程度——计算生物学家将它称为同源性(homology)。

46、接下去的环节,单细胞生物开始走向了复杂化的历程,生命的多细胞形态让地球有了无穷的可能性,因为不同的细胞出现了精细化分工。

47、同我们知道的所有生命一样,病毒携带了DNA或RNA,因此一些人认为病毒应当归属于生命,还有些人甚至声称病毒带有让我们了解生命起源的线索。如果是这样的话,生命似乎便不再是非黑即白的实体,而更像一群物体模糊的集合,没有明确的“活着”或“死亡”的边界。

48、薛定谔是一位物理学家。他希望从物理学的角度去理解生命是什么。为什么薛定谔认为物理学能够对理解生命的本质提供独特的启发?这要从什么是物理学讲起。

49、所有上述的准备都是为了胞生命诞生的那一刻,这是一个可以自我复制其生命分子和个体的生命单位,一个活着的细胞。这应该是一个有能力把遗传信息传递到几十亿年之后的细胞,一个有能力转动进化之轮的细胞。(从科学上来说,细胞学说的诞生(1839)远远早于DNA作为遗传物质的发现(1944),是第一个真正把所有生命都包含在内的学说。)可以说生命的诞生标志就是第一个细胞的诞生。在这个环节,立铭强调了细胞膜的产生是关键性的一步,因为这是把酶、遗传物质和其他生命必须分子聚集在同一空间的关键。我个人认为,对第一个细胞的多种想象也是立铭可以进一步加以发挥的地方,可能因为篇幅原因,立铭并没有在此进一步打开其想象力的闸门。而随之而来的细胞的分工即多细胞生命的出现则是打开了生命爆发的闸门,这直接导致了更为复杂的生命以及具有高等智慧的人类的出现。作者称之为“君临地球”。

50、宇宙万物千变万化,自然界里绚丽多彩,不外乎是生物和非生物之分。从现代科学的角度来看,生命只是物质运动的一种形态,它只是由蛋白质、核酸、脂类等生物分子组成的物质系统而己,远没有古人对生命的理解那么玄妙。

51、基因组工程将让我们变得更加多样化,由此进一步强化我们的生存前景。我们已经将自身物种的躯体特性进行了几个方面的拓展。举例来说,我们不断尝试着改善我们的健康状况,延长我们的寿命,加强我们的免疫系统和对疾病的抵抗力,诸如此类。我们还能够适应极高的人口密度和宇宙探索时的那种极低的人口密度。

52、释义:中国古代哲学范畴。指万物的天赋和禀受。

53、长久以来,生态学家一直很赞成这种深层关联、相互关联的生命观。这个观点最早源于19世纪初的探险家、自然学家亚历山大·冯·洪堡的思想,他认为所有生命都被一个互相连接的网络关联在一起。这种相互关联性是生命的核心,虽然这么说可能让人意外,但应该能让我们有充分的理由停下来,更深入地思考人类活动对生态世界里的其他生命体造成了怎样重大的影响。

54、这个设想一举解决了关于“分离之墙”的两个问题。大家都知道“油水不相容”,这是因为水分子带有强烈的极性,它的氧原子上带有强烈的负电荷,氢原子上则带有正电荷,因此水分子之间能够通过正负电荷的吸引形成稳定的结构。与之相反,大多数脂类分子的电荷分布很均匀,一旦放入水中,不仅不能和水分子形成电荷吸引,反而还会破坏水分子之间的稳定关系,就像把玻璃弹珠扔进一堆方方正正的乐高玩具一样不合时宜。因此脂肪分子不溶于水,而且在水中还会自发聚集成团,尽可能减少表面积,减少暴露在水分子面前的机会。这样一来,由脂类分子构成的膜当然就不会在水中分崩离析,而且天然地形成致密的结构,包裹住细胞内的生命物质。

55、科学并不是完美的,也不是万能的。科学的发展本身就有其历史上的偶然因素。数学从几何学开始,是因为古代的人们要丈量土地。物理学从牛顿力学开始,也是因为我们作为人类,能够感知到的现象,首先是苹果落地、行星转动,然后,我们才开始去探索我们看不到的东西,比如电磁、原子、量子力学。我给学生讲课的时候,曾经告诉学生,你们不要觉得物理学天经地义就应该是这样的。设想人类不是像现在这样大,假设我们像细菌一样小,生活在别人的细胞里,却和人类一样聪明,那么,我们先发明的物理学会是什么,是牛顿力学吗?学生都摇头。我们先发明的数学会是微积分吗?学生也摇头。其实,这正是科学不断进步的原因。科学的进步是从承认自己的无知开始的,科学是从猜测开始的,并在发展中不断地修正自己原有的观点。这正是薛定谔的《生命是什么》给我们的启示。

56、乔治·丘奇:美国著名学者、现代生物学领域最重要的意见领袖之一。他是遗传学与分子工程学的双料专家,哈佛大学和麻省理工学院的双料教授,美国科学院与美国工程院的双料院士,学术研究与科技创业的双料成功者;而这一切的代价,就是要两个行政助理才能管理得过来、精确到分并塞得满满的日程表。

57、点击图片阅读:力学细胞学:论细胞如何通过挤来挤去影响彼此的生命历程

58、当面对一个极为宏大的主题时,对于普通读者来说,需要在有限的知识储备下,跟上作者密集的信息量和节奏,在尽可能充分理解的状态下,把内容读完。这并不是一件容易的事,非常考验读者的“双商”——智商与情商。这样的阅读也许不那么简单舒适,却是十分必要的。

59、如果说,《吃货的生物学修养:脂肪、糖和代谢病的科学传奇》和《上帝的手术刀:基因编辑简史》是一种相对简单的科学主题写作,那么这一本的跨界和开放性则要远远超越前者,作品的输出方式也不仅仅重在科学史的叙述,而且是带有个人意志的、风格化的思想阐释。

60、病毒应该被视为生命么?图片来源:Jezper/Alamy

61、引证:曹禺《雷雨》第二幕:“蘩漪:自从我把我的性命、名誉,交给你,我什么都不顾了。”

62、合成生物学家一块一块地建立新生命,就如同搭乐高积木一样。图片来源:BrianJackson/Alamy

63、今时今日,我们可以挖掘出更多价值。薛定谔认为生命具有熵平衡的观点,可以说是后世研究方向的雏形,后来逐渐发展成认为生物特权(如复制、记忆、衰老、表观修饰和自我调节)就是非平衡复杂性的过程,且环境因素不容忽视。

64、夜晚,我们仰望满天繁星,当流星在天空划过一道美丽的弧线,我们不会想到,有一个只能用头脑工作的人,正在为揭开宇宙的奥秘而沉思;阳光明媚的日子,当我们泛舟湖上,在碧波清风中流连的时候,我们也不会想到,在幽深的湖底探寻的是一个身体截瘫的人。

65、但是,他们的残疾之躯同样展现着生命的活力,他们的思想同样闪现着智慧的光芒。人的生命的潜力是多么巨大,残疾带给人的痛苦也许远远超过其他困境带给人的痛苦,我想,残疾人甘愿忍受痛苦。展示自己生命力量的欲望,或许是健全人所难以想像的。

66、现代物理学的起源,是从观察天体开始的。好奇心是人类的天性,我们的祖先在远古时代就开始观测天象,并试图理解宇宙的秩序。早期的理论是“地心说”,即认为地球是宇宙的中心。但是,这一假说和一些观测到的天文现象不符,比如,在黎明和傍晚的时候,我们会看到金星会倒着往回走,从东方升起又再回去,如何解释这一现象?天才的天文学家托勒密修正了“地心说”,提出每个行星都在“本轮”上匀速转动,而本轮中心又在“均轮”上绕地球转动。这套理论较好地描述了天体运行的轨道。这就是在观测数据的基础上提出对原有理论的修正。

67、有了材料,也有了组装的方法,可大厦的构建怎么可能一帆风顺,即便建成了,经历多少意外、破坏仍能亘古不衰的理由又是什么?那便是自我复制。

68、七指生物学上认为生命是蛋白质存在的一种形式。

69、而在过去的一百年间,定义生命甚至变得更加困难了。一直到19世纪,主流说法都认为,生命区别于非生命的因素,就在于无形的“灵魂”或是“精神”而不同。但目前科学界已经抛弃了这一理论,因为有更为科学的观点取代了它。例如,美国航空航天局(NASA)就把生命定义为一种“符合达尔文进化理论并且可以自我维持的化学体系”。

70、话说回来,要说服大家相信一个看不见摸不着的东西仅仅因为逻辑上的理由就必须存在,确实还是需要些勇气的。读者们可能会想到一个类似的例子:物理学中“以太”的概念。而且别忘了,以太的概念最终被证明是多余的。所幸从18世纪开始,生物学家们观察到了一个很有趣的现象:把动物红细胞从血液里提取出来,丢进各种各样的溶液中,如果溶液里盐分很足,细胞会缩成一小团;如果溶液里盐分很少甚至没有,细胞又会肿胀得很大。这个现象当然可以有各种各样的解释,但是最简单的解释就是把细胞想象成一个薄膜包裹的盛水口袋,水可以在薄膜两边自由地流动,但是盐分子不可以。如果外界环境盐分太足,就会形成外高内低的盐浓度差,也就是说,内高外低的水浓度差,因而水会顺着这种浓度差,从里往外渗出来,让口袋变小;反过来水就会渗进口袋。

71、更何况,正如作者所言,“此时此刻,我们比以往任何时候都更需要了解生命科学,更需要深刻地理解生命和人类智慧”。

72、所以,当你感冒时,病毒会进入你的鼻腔细胞,利用它们的酶和原料来反复多次地繁殖病毒。随着病毒大量滋生,鼻子里受感染的细胞破裂并释放出了成千上万的感冒病毒。这些新的病毒会感染附近的细胞,并进入你的血液,继而感染其他地方的细胞。这是一种非常有效的策略,可以让病毒持续存在,但这也意味着病毒不能脱离其宿主的细胞环境单独运作。换句话说,它完全依赖于另一个生命体。你差不多可以这样说:在宿主细胞中具有化学活性和繁殖能力时,病毒是活着的,但当它在细胞外作为化学惰性病毒存在时,它又不算是活着的,病毒就在这两种状态间不断切换。

73、这些发现立刻引发了完全不同的两种解读。在一部分人看来,地球生命可能就来自这些从天而降的陨石,考虑到早期地球经历了密集的陨石雨轰击,来自天外的生命物质很可能足够多,因此构成了地球生命的物质基础。

74、作为神经科学家的王立铭,在这一部分的叙述中,既有来自神经生物学专业主义的阐释,还透着哲学思辨的光芒。

75、为此,薛定谔援引了另一位前量子物理学家德尔布吕克(MaxDelbrück)的实验,德尔布吕克通过高能辐射诱导基因突变,估算出基因的大小约为原子的1000倍。薛定谔认为这种尺寸过小,无法使其在统计波动的影响下继续保持这种“规律活动”(持久的遗传)。

76、直到此时,细胞膜的存在、细胞膜的特性、细胞膜的化学构成才真正取得了共识。高特和格兰戴尔的双分子层模型在此后经历过几次小的更正和改动,但是细胞膜的基本形态模型已经确立。实际上,尽管大家真正“看”到细胞膜是在20世纪50年代电子显微镜足够进步的时候,也就是二三十年之后,但是真到那个时候,大家反而没有那么大惊小怪了——因为细胞膜必须存在、由磷脂和胆固醇分子构成、是一个双层膜的夹心结构,在“眼见为实”之前就已经深入人心并写进教科书了。

77、但镜像生命不是天马行空的妄想,它是一种真实的可能性。为了让你信服,我会告诉你如何才能将它变为现实。不过在一开始,我们需要先对生命本身的复杂性有一个更加深入的认识。

78、立铭本书起名《生命是什么》,有向偶像薛定谔的《WhatIsLife?》致敬之意。薛定谔的这部名著启发了分子生物学时代的许多科学名家,最出名的当属DNA双螺旋结构的发现者之一沃森。我想,立铭花如此多心思打造这一本中文同名著作的“野心”也在与此,他一定希望本书能启发中国下一代科学家在青少年时代就能领略到真正的科学思维。我至今记得自己在年轻时阅读薛定谔这本著作时对科学产生的懵懂而向往的情愫。我相信立铭也做到了这一点,因为即使中年如我,在阅读本书过程中脑子里也在不断蹦出新的问题:假设宇宙中另存一个物理上一摸一样的太阳系,该太阳系里的星球能进化出和我们地球一样的生命类型吗?人类出现在那里的机率是否可以通过德雷克公式推导出来?自称掌握了基因编辑这把上帝的手术刀的人类真的可以跳出自然选择吗?在生命产生初期,是否产生过不基于DNA传递遗传信息的生命形式而被筛选掉了?最早的产生的细胞里的基因组到底有多大?进化论是否是放之宇宙而皆准的生命法则?

79、在薛定谔之后,生命科学出现了两次革命。一是分子生物学的革命,标志是DNA的发现。分子生物学的出现,受到薛定谔等物理学家的极大影响。同时,物理学还为生物学提供了X射线、磁共振、电子显微镜、高速离心机等工具。二是基因组学,就是我们说的测序,这是数学、计算机科学和生物学的交叉。分子生物学使得我们像了解一辆汽车的零部件一样,对细胞、染色体、DNA等有了透彻的了解。基因组学则是把“生命天书”拷贝了下来。这好比是汽车的修理手册,出来什么故障,怎么修理,这本书上都有。甚至像我们为什么会衰老,怎样防止人们衰老这些问题的答案,其实都在这本天书里面,但是,我们对这本天书还没有完全读懂。

80、对此,薛定谔提出可以从量子力学的角度解释这个问题。分子中的原子通常以多种方式稳定排列,且每种构型都有对应的能量,这也是薛定谔对不同等位基因的设想。不过,其间的“量子跃迁”通常受到高能垒的抑制。

81、Nature|doi:1038/d41586-018-06034-8

82、Bada是StanleyMiller的学生,他参与了著名的Miller-Urey实验。这个实验在20世纪50年代进行,是最早探究生命如何从无生命的化学物质起源的实验之一。他再次进行了这一著名的实验,证明了在放电的条件下,原始地球上存在的化学物质可以产生更大范围的生物相关分子。

83、正如我们之前看到的,六次产业革命与相应量化技术的进展之间密切相关。再现复杂性可能就是现今这场革命的组成部分。同时,随着我们进一步了解生命的本质,它也将成为我们所由衷赞叹的一部分。

84、根据欧福顿的理论,这层膜是脂类分子,因此可以用有机溶剂轻松提纯。然后,高特和格兰戴尔把从红细胞提取的这些物质平铺到一杯水上,小心翼翼地拉成了一层膜。这个过程有点像把吃饭剩下的油倒进开水里,菜汤表面就会形成一层油光光的薄膜。然后他们发现,拉出这层膜的面积,排除掉实验误差,差不多正好是计算出的红细胞表面积的两倍!换句话说,细胞膜应该不是一层,而是由两层分子构成的。

85、本文由施普林格·自然上海办公室负责翻译。中文内容仅供参考,一切内容以英文原版为准。欢迎转发至朋友圈,如需转载,请邮件Chinapress@nature.com。未经授权的翻译是侵权行为,版权方将保留追究法律责任的权利。

86、这就是物理学发展的一般规律:先做观测、积累数据,然后提出假说。假说可能是粗糙的、表面的,但是,随着数据越来越精确、越来越丰富,会出现更加简洁、深刻的理论。在这一过程中,新的分析工具也会被开发出来,比如,牛顿就发明了微积分。

87、病毒是个很好的例子。它们是有基因组的化学实体,有的基于DNA,有的基于RNA,包含了制造包裹每个病毒的蛋白质外衣所需的基因。病毒可以通过自然选择进化,这一点符合马勒的定义,但别的方面就不那么清晰了。尤其是从严格意义上说,病毒不能自我繁殖。相反,它们繁殖的唯一途径是感染生物体的细胞,劫持被感染细胞的新陈代谢。

88、哥白尼觉得这套理论过于繁琐,他提出了“日心说”。“日心说”只是一种假说,而且并不能更好地解释天体运行,因为哥白尼假设天体运行轨道是圆形的,现在我们都知道,天体的运行轨道其实是椭圆形的。后来,丹麦科学家第谷观测了大量天体数据,他的助手开普勒利用这些数据,提出了我们现在熟知的行星运动三大定律。再到后来,牛顿认为,三大定律揭示的只是表面现象,还没有解释天体运行的本质。他认为,一个更基本的东西就是引力。牛顿提出的万有引力定律,把开普勒的三大定律做了更简洁的概括,把当时人们所能想到的力学运动都统一起来了。

说说分类
说说列表